In situ hybridization on whole mount embryos of *C. elegans**

Tomoko Motohashi, Keiko Hirono, and Yuji Kohara $^{\$}$

Genome Biology Lab, Center for Genetic Resource Information, National Institute of Genetics, Mishima 411-8540, Japan

Table of Contents

1. Preparation of DIG-labeled DNA probes for <i>in situ</i> hybridization	2
1.1. DIG-labeling by linear PCR	
1.2. Chopping the probes by DNaseI digestion	
2. Fixation of embryos from a small number of worms	3
3. Large scale fixation of embryos	
3.1. Harvesting of embryos	
3.2. Fixation	5
4. Hybridization and signal detection	6
4.1. Proteinase K treatment	6
4.2. Pre-Hybridization	6
4.3. Hybridization	7
4.4. Washing	7
4.5. Probe detection	7
4.6. Mounting	7
5. Reagents	8

^{*}Edited by Ikuko Muramatsu, Masumi Obara, Wakako Shimizu, Aya Hamakawa, and Yuji Kohara. Last revised April 27, 2005. Published May 19, 2015. This chapter should be cited as: Motohashi T., Hirono K., and Kohara Y. *In situ* hybridization on whole mount embryos of *C. elegans* (May 19, 2015), *WormBook*, ed. The *C. elegans* Research Community, WormBook, doi/10.1895/wormbook.1.176.1, http://www.wormbook.org.

Copyright: © 2015 Tomoko Motohashi, Keiko Hirono and Yuji Kohara. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

[§]To whom correspondence should be addressed: Email: Ikuko Muramatsu, isugiura@lab.nig.ac.jp, Yuji Kohara, ykohara@lab.nig.ac.jp

1. Preparation of DIG-labeled DNA probes for in situ hybridization

1.1. DIG-labeling by linear PCR

1. Make the following reaction mix (total $10 \ \mu$ l):

distilled water	4.4 µl
anchored oligo dT primers*	3.0 µl
$10 \times Taq$ buffer	1 μl
Taq polymerase	0.1 μl
$10 \times \text{DIG-dUTP/dNTP mix}^{**}$	1.5 μl
cDNA insert (> 3.5 ng/µl) amplified from yk clone using T7/T3 primers	0.6 µl

* anchored oligo dT primers:

5.3 μ M (dT)₁₇dG/5.3 μ M (dT)₁₇dC/21.3 μ M (dT)₁₇dA (This is to avoid the effect of poly-A stretch. Other vector primers may be used.)

** $10 \times \text{DIG-dUTP/dNTP}$ mix:

0.35 mM DIG-dUTP/0.65 mM dTTP/1mM each d(A, G, C)TP

2. Subject to thermal cycling:

hot start at 95 °C for 45 sec

- 95 °C \times 15 sec
- 45 °C \times 1 min
- 72 °C \times 1 min

50 cycles

- 3. Add 10 μ l of 10 mM EDTA
- 4. Pass through G-50 spin colum chromatography (ca. 250 µl bed volume)
- 5. Add 5 µl of TSE

1.2. Chopping the probes by DNasel digestion

6. Make the following reaction mix (total 25 μ l) on ice:

The G-50 elutate	20 µl	
10 mg/ml Salmon sperm DNA	1 µl	
distilled water	0.5 µl	
$10 \times \text{DNase buffer*}$	2.5 µl	
DNaseI (16 µg/ml)**	1 µl	

** Dilute stock solution (1 mg/ml) with 0.1 M NaCl.

(Note : Best size of probes is about 100 bases. Longer probes may cause high background. The concentrations of the enzyme should be optimized by pilot experiments.)

- 7. Incubate at 37 °C for 30 min
- 8. Transfer on ice
- 9. Add 5 μ l of 0.1 M EDTA
- 10. Heat at 75 $^{\circ}$ C for 5 min
- 11. Check the size by alkaline agarose gel electrophoresis and DIG detection, if necessary
- 12. Store frozen

2. Fixation of embryos from a small number of worms

- 1. Take siliconized 1.5 ml eppendorf tubes
- 2. Place about 100 µl of distilled water on the (inside) top of the lids
- 3. Pick and transfer 40-50 gravid worms into the water. If you need very late stage embryos:
 - a) Add 50 µl of suspension of *E. coli* OP50 in S-basal
 - b) Cover the lid with the body of the tube
 - c) Let stand at 20 °C overnight
- 4. Spin down the worms.
- 5. Add equal volume of $2 \times$ alkaline-bleach solution and mix well
- 6. Leave at r.t. for 10 min to dissolve the adult bodies
- 7. Add 1 ml of M9 buffer at 4 $^{\circ}$ C
- 8. Centrifuge at 2500 rpm for 30 sec at 4 °C in a swing rotor
- 9. Remove the sup carefully, leaving about $100 \ \mu l$ of the sup to avoid removing the embryos
- 10. Repeat steps 7-9 three more times
- 11. Add an equal volume of 3 mg/ml chitinase
- 12. Mix and incubate at r.t. for 3 min
- 13. Spin at 2500 rpm for 30 sec at 4 $^{\circ}$ C
- 14. Reduce the volume to about $50 \ \mu l$
- 15. Transfer the embryos to a poly-L-lysine coated 3-well slide using a siliconized pipette tip
- 16. Add a half volume of 4% gelatin, 2% BSA, and mix gently by pipeting

- 17. Let stand for several minutes to allow the embryos settled down to the bottom
- 18. Cover with a cover slip $(24 \times 40 \text{ mm})$
- 19. Place it on the top of a dry ice block
- 20. Freeze for 7 min at -70 $^{\circ}$ C
- 21. Peel off the cover slip quickly
- 22. Soak the slide in methanol cooled at -20 °C for 5 min
- 23. Rehydrate by soaking the slide in the series of the following solutions pre-cooled at 4 °C:

methanol	for 5 min
methanol:formaldehyde-Hepes-PBS* = 35:15	for 2 min
methanol:formaldehyde-Hepes-PBS* = 25:25	for 2 min
methanol:formaldehyde-Hepes-PBS* = 15:35	for 2 min
formaldehyde-Hepes-PBS*	for 20 min

*formaldehyde-Hepes-PBS	
Hepes	200ml
10xPBS	25ml
formaldehyde	25ml

24. Dehydrate by soaking the slide in the series of the following solutions at r.t.:

ethanol:PBS=15:35	for 5min
ethanol:PBS=25:25	for 5min
ethanol:PBS=35:15	for 5 min
ethanol	for 5 min \times 2 times

25. Store in ethanol at -20 °C.

3. Large scale fixation of embryos

3.1. Harvesting of embryos

- 1. Get a plenty of worms from a mixed stage population
- 2. Wash the worms 2 times with M9 buffer
- 3. Collect L1-L3 by sieving through 50 µm Nylon mesh
- 4. Allow the collected worms to grow to young adults in liquid culture
- 5. Take 1 ml packed worms from the culture, which will give 8-15 slides for *in situ*
- 6. Resuspend the worms in 4 ml water in a 15 ml Falcon tube (clear type)

- 7. Add 5 ml of $2 \times$ alkali-bleach solution, mix well and let stand for 10 min
- 8. Force the worms out through a 23-gauge needle onto nylon mesh
- 9. Collect embryos by spinning the filtrate at $800 \times g$ using a swing rotor
- 10. Wash the embryos 4 times with M9 and transferred into a siliconized eppendorf tube

3.2. Fixation

- 1. Take 100 μ l (packed volume) of the embryos and adjust the volume to 200 μ l with M9
- 2. Add 200 µl of yatalase (15 mg/ml in 0.3 M mannitol) and vigourously shake for 75 sec
- 3. Wash the embryos 3 times with EH buffer (Embryo Handling buffer)
- 4. Wash the embryos with Basal EH buffer
- 5. Resuspend the embryos in 1 ml of Basal EH buffer. (Note: For success, it is desired that 20-30% of embryos are devitellinized at this step)
- 6. Place 30 µl/well of Basal EH buffer onto each well of poly-L-lysine coated 8-well slides
- 7. Dispense 5 μ l/well of the embryo suspension into the buffer at each well
- 8. Let stand for 10 min at 4 °C to settle the embryos to the bottom
- 9. Remove the buffer, and immediately immerse in methanol at -20 °C for 5 min
- 10. Rehydrate the embryos by immersing the slides in the following series at 4 °C. The solutions must be pre-cooled at 4 °C.

methanol	5 min
methanol:3.7% formaldehyde in hepes-PBS = 7:3	2 min
methanol:3.7% formaldehyde in hepes-PBS = 1:1	2 min
methanol: 3.7% formaldehyde in hepes-PBS = 3.7	2 min
3.7% formaldehyde in hepes-PBS	75 min at 22 °C

11. Dehydrate the embryos by immersing the slides in the following series at r.t.

ethanol:PBS = 3:7	5 min
ethanol:PBS = $1:1$	5 min
ethanol:PBS = 7:3	5 min
ethanol	$5 \min \times 2 \text{ times}$

12. Store in ethanol at -20 °C.

4. Hybridization and signal detection

4.1. Proteinase K treatment

1. Rehydrate the embryos by immersing the follwoing ethanol series:

0.03% H2O2 in ethanol:PBS = 7:3	2 min
ethanol:PBS = 1:1	5 min
ethanol:PBS = 3:7	5 min

- 2. Wash the slides once by immersing in PBT for 5 min. *For late stage embryos, additional HCl treatment is effective, which can cut glycosid bonds of the proteoglycan that appear on late stage embryos.
 - a) Immerse the slides in 0.2 N HCl for 20 min at r.t.
 - b) Wash the slides 2 times in PBT for 5 min
- 3. Immerse the slides in proteinase K (10 μ g/ml in PBT) and incubate at r.t. for 11 min
- 4. Stop the digestion by immersing the slides in 2 mg/ml glycine in PBT for 2 min
- 5. Wash the slides twice by immersing them in PBT for 2 min each
- 6. Refix by immersing the slides in 3.7% formaldehyde in hepes-PBS at r.t. for 50 min
- 7. Wash the slides twice in PBT for 5 min each
- 8. Immerse the slides in 2 mg/ml glycine in PBT at r.t. for 5 min
- 9. Wash the slides in PBT for 5 min

4.2. Pre-Hybridization

1. Immerse the slides in the following series of mixtures;

50% formamide, $5 \times SSC$, heparin, 0.1% Tween:PBT = 1:1	10 min
50% formamide, $5 \times SSC$, heparin, 0.1% Tween	10 min

- 2. Wipe off the slides
- 3. Draw a rectangle surrounding the sample wells using a IMMUNO pen to make a ridge
- 4. Add 250 μl of heat denatured (at 99 °C for 10 min and quickly chilled for 5 min) hybridization solution for each 8-well slide
- 5. Place the slide in a moist chamber containing a paper towel wetted with 50% formamide, $5 \times SSC$. (No need to use coverslips)
- 6. Incubate at 48 °C for 1 hr

4.3. Hybridization

- 1. Add 50 μ l of heat-denatured DNA probes for each slide. (The final concentrations of probes is about 0.06 μ g/ml)
- 2. Cover the slide with a parafilm coverslip to reduce evaporation
- 3. Incubate the slides at 48 °C overnight in the moist chamber

4.4. Washing

1. Wash the slides in the following series of washing solutins at 48 °C with slight agitation

50% formamide, $5 \times SSC$, heparin, 0.1% Tween:PBT = 1:1 (First washing is performed in separate containers for every 2 min slides)	
50% formamide, $5 \times SSC$, heparin, 0.1% Tween:PBT = 1:1	$10 \min \times 2 \text{ times}$
$0.8 \times PBS, 0.1\%$ CHAPS	$20 \min \times 4 \text{ times}$

2. Wash the slides twice in PBT for 5 min at r.t. to remove CHAPS.

4.5. Probe detection

- 1. Incubate the slides in PBtr (PBS, 0.1% Triton-X100, 0.1% BSA, 0.01% NaN₂) for 1.5 hr at r.t.
- 2. Cover the embryos with 250 µl of anti-DIG conjugate (dilute 1:2500)/8-well slide
- 3. Incubate for 2 hrs at r.t. in a moist chamber. (no need to use coverslips)
- 4. Wash the slides with PBtr 4 times with slight agitation
- 5. Wash the slides with the staining buffer (see reagents) twice for 5 min each at r.t.
- 6. Color development
 - a) Mix 180 µl of NBT and 140 µl of BCIP in 40 ml of staining buffer.
 - b) Immerse the slides in the mixture for 1 hr at 22 °C in the dark, monitoring the extent of the staining.
- 7. Wash the slides three times with PBS, 20 mM EDTA to stop the reaction.
- 8. If necessary, incubate the slides in 1 μ g/ml DAPI in Tris buffer at 4 °C for 30 min.

4.6. Mounting

4.6.1. Permanent mount 1

- 1. Add about 90 μl of "MOUNT-QUICK AQUEOUS" onto the embryos on the slide
- 2. Cover with a coverslip
- 3. Let stand one day to dry up
- 4. Seal up the edge of the coverslip using nail varnish

4.6.2. Permanent mount 2

1. Dehydrate with the following ethanol series:

ethanol:PBS = 3:7	5 min
ethanol:PBS = 1:1	5 min
ethanol:PBS = 7:3	5 min
ethanol	$5 \min \times 2 \text{ times}$

- 2. Wash once with ethanol:Histo-Clear (National Diagnostics) = 1:1
- 3. Wash once with Histo-Clear
- 4. Add drops of Mount-Quick onto the embryos and cover with a coverslip
- 5. Leave the slide at 40 °C for several hours

(Note : Hybridization signals by this method tend to be weaker than those by other methods and to diffuse, but preservation of morphology is better than other methods)

4.6.3. Glycerol mount

- 1. Add drops of 90% glycerol, 10 mM Tris, 1% n-propylgallate onto the embryos
- 2. Cover with a coverslip which are dotted with vaselin:solid paraffin = 9:1 at the 4 corners as spacer

5. Reagents

M9

KH ₂ PO ₄	3 g	
Na ₂ HPO ₄	6 g	
1M MgSO ₄	1 ml	
Add DW to total 1 liter and autoclave		

S-basal

NaCl	69 g
1M K-PO ₄ (pH6)	100 ml
cholesterol (5 mg/ml in EtOH)	2 ml
Add DW to total 2 liter and autoclave	

$2 \times alkali-bleach$ solution

NaClO	3.0 ml
5M KOH	2.5 ml
DW	19.5 ml

PBS

NaCl	13 7 mM
KCl	2.7 mM
Na ₂ HPO ₄	4.3 mM
KH ₂ PO ₄	1.5 mM
Adjust pH to 7.2 and autoclave	

PBT

 $PBS + 0.1\% \ Tween \ 20$

EH buffer (Embryo Handling buffer)

mannitol	0.3 M
Hepes pH 7.2	50 mM
NaCl	10 mM
MgCl ₂	10 mM
EGTA	0.04%
NH ₄ NO ₃	2 mM
gelatin	0.1%
DTT	2 mM

Basal EH buffer

(= EH buffer without EGTA, NH_4NO_3 , gelatin and DTT)

Glycine in PBT

Glycine	2 mg/ml in PBS
	autoclave, then add 0.1% Tween 20

3.7% Formaldehyde in hepes-PBS

hepes buffer*:formalin: $10 \times PBS = 8:1:1$

*hepes buffer

Hepes	100 mM
MgSO ₄	2 mM
EGTA	0.04%
Add NaOH to pH6.9 and autoclave	

Hybridization solution

deionized formamide	50%
SSC (pH7, autoclaved)	5×
sonicated salmon testis DNA	100 µg/ml
yeast tRNA	100 µg/ml
heparin	100 µg/ml
Tween 20	0.1%

yatalase (15 mg/ml) and **chitinase** (1 mg protein/ml = 5 mg crude/ml)

- 1. Dissolve powder of yatalase (TAKARA No.T017) or chitinase (SIGMA No. C-6137) in 0.3 M mannitol, 50 mM Hepes pH 7.2, 10 mM NaCl, 10 mM MgCl₂, 2 mM DTT
- 2. Filtrate through a 0.45 µm syringe filter.
- 3. store at -20 °C.

Digoxigenin-11-dUTP (Roche 1570013)

PBT

0.1% Tween-20 in PBS (0.01% DEPC treated)

PBtr

0.1% BSA (Fraction V), 0.1% Triton X-100 in PBS proteinase K stock solution

20 mg Proteinase K (Roche 30U/mg)/ml water

Staining buffer (Alkaline phosphatase reaction buffer)

NaCl	100 mM
MgCl ₂	5 mM
TrisHCl pH 9.5	100 mM
Levamisol	1 mM
Tween-20	0.1%

poly-L-lysine coated slides

- 1. Immerse glass slides in solution of kitchen detergent for 20 min
- 2. Wash in tap water for 1 hr
- 3. Wash in ion-exchanged water
- 4. Autoclave and dry at 80 $^{\circ}C$
- 5. Drop poly-L-lysine solution (SIGMA P-8920) onto individual wells of the slides
- 6. Leave for 25 min

- 7. Aspirate off the excess solution (only when 3-well slides are used)
- 8. Dry at 65 °C for 1 hr

Parafilm coverslips

- 1. Dribble beads of rubber cement along the edge of square pieces of parafilm
- 2. Dry briefly at 35-40 $^{\circ}$ C